Switched environments security... A fairy tale.

Cédric Blancher <blancher@cartel-securite.fr>

10 july 2002

- Network basics
 Ethernet basics
 ARP protocol
- Attacking LAN

Several ways to redirect network streams on a LAN.

ARP cache poisoning, how and why... ARP cache poisoning study Exploiting

How to protect yourself ? Defending against LAN attacks

Network basics
 Ethernet basics
 ARP protocol

Attacking LAN

Several ways to redirect network streams on a LAN.

ARP cache poisoning, how and why...

ARP cache poisoning study

Exploiting

How to protect yourself ? Defending against LAN attacks

Ethernet :

- Layer 1 and layer 2 protocol
- Different media : 10base2, 10base5, 10baseT, 100baseTX, 100baseFX, etc.
- → Focus on star bus media such as 100baseTX or 100baseFX.

Ethernet as layer 1 protocol :

- Relies on CSMA/CD
- Layer 1 network using hubs
- Constitutes a collision domain
- Electrical signal is sent to whole collision domain
- → Within a collision domain, frames are sent to everyone

Ethernet as layer 2 protocol :

Ethernet frame :

Destination MAC Source MAC Type Payload Checksum	Destination MAC	Source MAC	Туре	Payload	Checksum
--	-----------------	------------	------	---------	----------

Ethernet frame

- Layer 2 addressing : MAC addresses
- Layer 2 networks using switches

Switches : designed for bandwidth improvement

- Is able to read ethernet adresses in frames
- Associates a port to a MAC addresses list
- Reads source MAC address to keep list up to date
- Reads destination MAC address to switch frame

Consequences :

- Network is split into collision domains
- Frames are only sent to the concerned port
- Bandwidth is improved
- Urban legend : can't sniff a switched network

Communicating with upper layers

- Layer 2 addressing : ethernet
- Layer 3 addressing : IP
- Need to associate IP addresses to MAC addresses
- → ARP : Address Resolution Protocol (RFC 826)

Hardware type		Protocol type
HW addr Ith	P addr Ith	Opcode
Source hardware address		
Source protocol address		
Destination hardware address		
Destination protocol address		

ARP message

- ► HW type : ethernet (0x1)
- Proto type : IP (0x800)
- ▶ HW address length : 48 bits
- Proto address length : 32 bits
- ARP request : Opcode=1
- ARP reply : Opcode=2

An ARP request : who has 192.168.1.11 tells 192.168.1.10

- From 00:10:A4:9B:6D:81
- To FF:FF:FF:FF:FF:FF (broadcast)

0	x1	0x800
0x30	0x20	Ox1
00:10:A4:9B:6D:81		
192.168.1.10		
00:00:00:00:00		
192.168.1.11		

ARP request

An ARP reply : 192.168.1.11 is at 00:04:76:40:65:5E

- ▶ From 00:04:76:40:65:5E
- ▶ To 00:10:A4:9B:6D:81

Ox1		0x800
Ox30	0x20	Ox2
00:04:76:40:65:5E		
192.168.1.11		
00:10:A4:9B:6D:81		
192.168.1.10		

ARP reply

ARP cache

- Need to cache ARP informations
- Need for a mecanism to keep cache up to date
- Aging timers
- Update processes
- "Keep alive" stuff
- According to RFC, we are very opportunist when gathering informations

We gather informations wherever they are to keep cache up to date

- ARP requests source informations
- ARP replies informations (even unasked for !)
- ➡ ARP cache is a good target for attackers ;)

OK... We're done with the basics, let's move on to attacks now.

Network basics Ethernet basics ARP protocol

Attacking LAN
 Several ways to redirect network streams on a LAN.

ARP cache poisoning, how and why... ARP cache poisoning study Exploiting

How to protect yourself ? Defending against LAN attacks

LAN attacks

- Layer 1 : sniffing
- Layer 2 : MAC spoofing and "disturbing" switches
- ARP level : ARP spoofing
- ARP level : ARP cache poisoning
- Other attacks

Ethernet frames sniffing

You can sniff all frames within your collision domain using promiscuous mode

➡ Pros

- Passive if done the right way
- ➡ Cons
 - Passive
 - Acting on traffic is tricky (ACK storm)
 - Useless in full switched environments

MAC spoofing

- ► Use a spoofed MAC address as ethernet source
- Relies on MAC/port association table update
- Promiscuous mode to get interesting frames
- → Pros
 - Redirects traffic : we can act on it
- ➡ Cons
 - Spoofed host is no longer reachable by anyone
 - Creates port/MAC association conflicts
 - Easily detectable behaviour
 - Often leads to port shutdown

20

"Disturbing" switches

- Associations table can be flooded
- Too much conflicts can lead to strange behaviour
- When disturbed, some switches falls into repeater mode (hub-like)
- ► Pros
 - Hub-like behaviours
- - Relies on flooding
 - Easily detected
 - Works on equipements with old firmware
 - Often leads to port shutdown

ARP spoofing

- ARP request are sent to broadcast
- ▶ It is possible to reply to arbitrary requests, with arbitrary replies

➡ Pros

- No need to attack switch
- Allows traffic redirection

➡ Cons

Leads to conflicts

ARP cache poisoning

- ▶ We force changes into victim ARP cache
- See next part ;)
- ➡ Pros
 - Allows traffic redirection
 - Quite difficult to prevent
- ➡ Cons
 - ► Not much...

Other protocols

- Spanning tree protocol (STP)
- Discovery protocols (CDP)
- Automatic VLAN exportation protocols (VTP, DTP)
- Failover protocols (HSRP, VRRP)
- Can lead to traffic redirection and DoS

Let's focus on ARP cache poisoning...

25

Network basics Ethernet basics ARP protocol

Attacking LAN

Several ways to redirect network streams on a LAN.

ARP cache poisoning, how and why... ARP cache poisoning study Exploiting

How to protect yourself ?
Defending against LAN attacks

ARP cache updates

- Opportunistic behaviour
- Entry insertion
- Entry update
- Entry deletion
- → Let's see how we can fool this...

Available parameters

- Ethernet source MAC address
- Ethernet destination MAC address
- ARP HW source address
- ARP Proto source address
- ARP HW destination address
- ARP Proto destination address

ARP cache entry creation

- When communicationg with unkown IP (ARP request is sent)
- ► When unknown IP wants to talk to us (ARP request is received)
- Acting on first case is ARP spoofing
- Acting on second case is OK if sent directly to target

ARP cache entry creation forcing using spoofed request

- Ethernet destination MAC is target address instead of broadcast
- arp-sk -w -d Target -S Spoofed -D Target

Ox1		0x800
0x30	0x20	Ox1
Spoofing MAC		
Spoofed IP		
00:00:00:00:00		
Target IP		

Fooled ARP request

ARP cache entry creation forcing using spoofed reply

- Does not work on all OS (can't fool Linux 2.4, Windows XP)
- arp-sk -r -d Target -S Spoofed -D Target

Ox1		0x800
0x30	0x20	Ox2
Spoofing MAC address		
Spoofed IP		
Target MAC address		
Target IP		

Fooled ARP reply

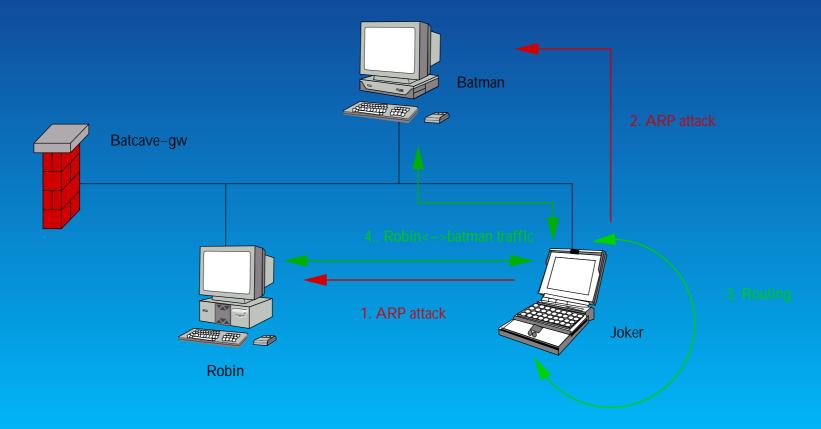
We prefer use spoofed requests to create entries

ARP cache entry update forcing

- Can be done using spoofed ARP requests
- Can be done using spoofed ARP replies
- Must be sent regularly to avoid legitimate cache update !
- Interesting entries are always cached : gateways, DNS servers, etc.

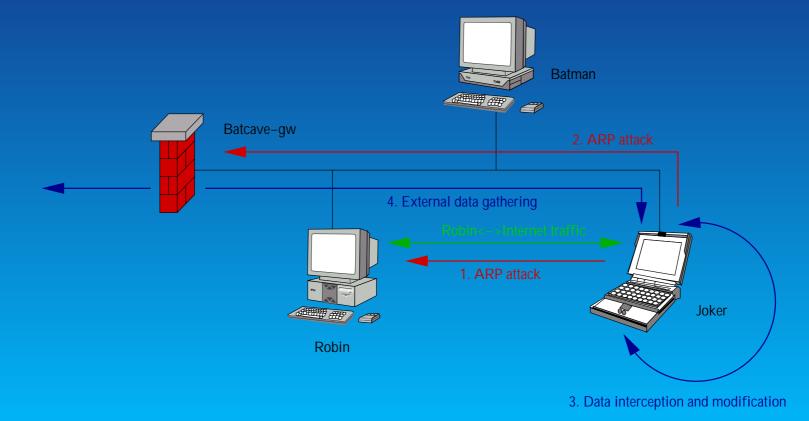
ARP cache entry deletion forcing

- Entries can expire
- Entries number is limited (typically 20)
- ► By creating enough entries, we force older entries deletion

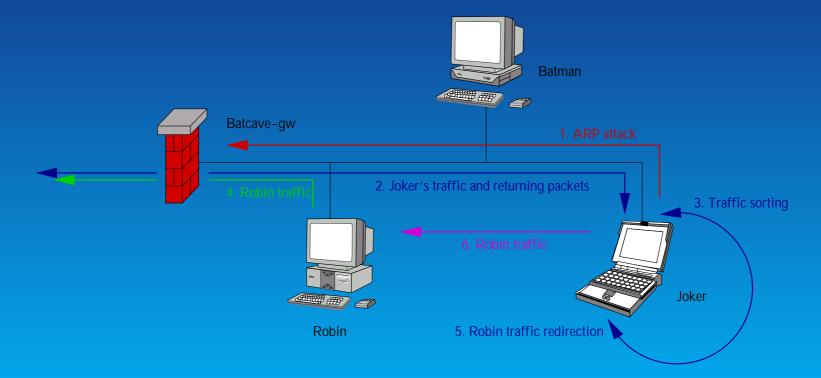


ARP cache poisoning applications

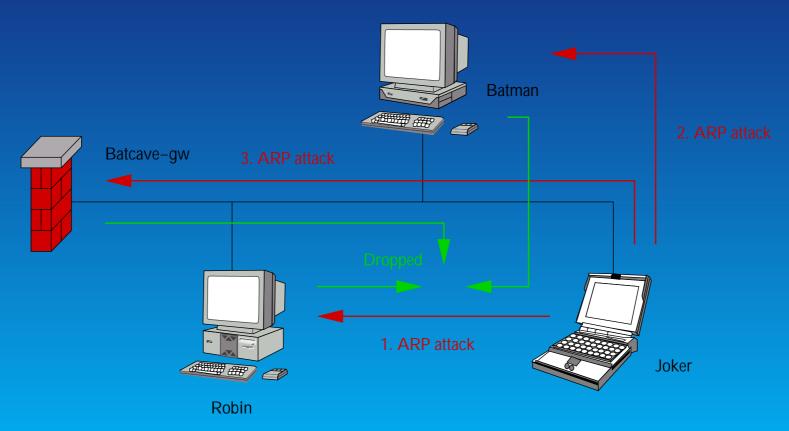
- Spying : you can read data without using promiscuous mode
- Interception : you can transparently proxy connections
- Decrypting : you can decrypt connections using Man in the Middle attack
- Hijacking : you can steal proxied connections
- Tampering : you can inject traffic into proxied connections
- Firewall bypassing : you can bypass firewalling rulesets using IP spoofing
- DoS : packets are redirect to a dead MAC



ARP MitM for spying, decrypting connections



ARP proxying for traffic tampering and connection hijacking


One way ARP cache poisoning for IP spoofing and firewall bypassing

Can be done using MitM between robin and batcave-gw;)

CARTEL SÉCURITÉ - Cédric Blancher

DoS using ARP cache poisoning

 DoSed hosts are likely to check their entries when things go wrong

CARTEL SÉCURITÉ - Cédric Blancher

Consequence

 Once an attacker is root on a network, the whole ethernet segment is no more secure

Network basicsEthernet basicsARP protocol

Attacking LAN

Several ways to redirect network streams on a LAN.

ARP cache poisoning, how and why... ARP cache poisoning study Exploiting

How to protect yourself ? Defending against LAN attacks

Protections

- Maximum segmentation
- Switches security features
- Static ARP caches
- NIDS stuff
- Layer 2 and ARP filtering
- Strong authentication
- → Theses protections are not easy to maintain, but are needed

Switches security features

- Use recent firmware to avoid strange behaviours
- Use static MAC/port associations when available
- Use administrative port shutdown when conflict occurs
- Prevents MAC spoofing or flooding, but not ARP attacks
- Some layer 3 switches feature IP/MAC/port associations

Static ARP caches

- ► ARP entries can be added "manually" using arp -s
- /etc/ethers like files can be loaded using arp -f
- Such entries are permanent : cannot be nor deleted nor updated
- ➡ Prevents ARP attacks
- Beware of the Windows world, in which permanent entries can be updated (except in XP)
- You can sometimes set ARP entries expiration time (Solaris, Linux)
- → A lot of commercial products do not feature ARP cache tuning

NIDS stuff

- ARPWatch (and WinARPWatch) allows you to track IP/MAC associations through ARP messages
- Some NIDS feature an ARP plugin that monitors ARP messages (Prelude IDS)
- Allows detection, but reaction is tricky : fooled messages don't violate RFC
- NIDS lack ARP support : you can't specify specific rules for ARP

Layer 2 and ARP filtering

- Linux Netfilter has a MAC source address match
- Linux Netfilter will soon provide an ARP table for ARP messages filtering
- Lack of products that allow this kind of filtering

Strong authentication

- Relies on cryptographic authentication
- ► Use public keys, certificates or secure authentication protocols
- → Reliable but quite painful to deploy
- → Users can be fooled by well crafted false certificates

Check physical accesses to your network

- Social engineering
- Foreign computers, such as laptops
- Wireless access points (802.11b)
- Do not let anybody plug himself onto your network !

ARP is a weak protocol, easy to fool : it was not designed for security.We need a more secure way to authenticate hosts.Whatever, it is obvious that switches are not security tools.

↦ http:

//www.networksorcery.com/enp/default0402.htm

- http://www.arp-sk.org/
- http://www.monkey.org/~dugsong/dsniff/
- http://www.bitland.net/taranis/
- http://www.off.net/~jme/ols2000/html/img0.htm
- http://www.netfilter.org/
- ➡ http:
 - //letanou.linuxfr.org/arpwatch/arpwatch.html
- http://jota.sm.luth.se/~andver-8/warp/
- http://www.prelude-ids.org/
- http://www.cartel-securite.fr/

