
GIT Tutorial

Author : Matthieu FOURNET (remove « YOUR PANTS » to mail me)

URL : http://doc.callmematthi.eu/TOC.html#git

Date : 2019/01/09

This work is licensed under a Creative Commons Attribution – NonCommercial – ShareAlike 4.0 International License.

Contents

1.What is Git made for ?...2

a.« cpold »..2

b.History as a giant header comment...2

c.Working with others...3

2.Git’s « Building blocks »...3

a.the « working directory »...3

b.the « index » (or « staging area »)...3

c.the « .git » directory...4

3.Prerequisites..4

4.My first Git repository...4

5.My first commit...5

a.NB : about « tracked » files and « git add » :...5

6.A less basic commit...6

7.Here comes the magic !...7

a.Discard all changes...7

b.Undelete files...8

8.Git must be aware of every change !...8

a.Renaming a file..8

b.Deleting a file...9

9.Commit error...10

10.Branches..12

a.Creating a new branch...12

b.Jumping from branch to branch...13

c.Branches, what then ?...14

d.Branches : the end...15

11.Remotes...16

mailto:YOURfournet.PANTSmatthieu@gmail.com?subject=About%20the%20GIT%20tutorial
http://doc.callmematthi.eu/TOC.html#git
http://creativecommons.org/licenses/by-nc-sa/4.0/

a.Let’s create a remote repository..16

b.Having a look at this « remote » thing...17

c.Let developers share code...18

12. Final advice...19

a.Help on git commands :...19

b.Architecture, branches, remotes and naming..19

13.Sample ~/.gitconfig :..19

1. What is Git made for ?

Git is made to handle text that changes over time : programs are text, scripts are text,

documentation and configuration files are text, too. Even « pictures » can be text (SVG graphics,

diagrams internally handeld as XML, ...)

Git is there to help you track :

• what has changed

• when it was changed

• who changed it

and most important :

• WHY it changed

• and what changed at the same time

This is why Git is not reserved to developers : it can be useful to everybody working with text,

changing / sharing and relying on text.

Here are some common use cases you probably have already met :

a. « cpold »

If you have already done (or regularly do) one of these :

• cp someFile someFile.old
• cp someFile someFile_BACKUP1
• cp -p someFile someFile.$(date <date options>)

 you’re doing manually something Git can do (beter !) for you.⇒

b. History as a giant header comment

If your scripts start with a giant comment like :

2012-03-29 bob initial version
2012-04-17 bob made change X and Y
2012-04-28 stuart fix bug Z
2013-02-06 kevin add functionality XY
…
2018-11-16 … ...

 you’re doing manually something Git can do (beter !) for you.⇒

c. Working with others

The « cpold » method above may work (albeit unefficient) for a single person. Doing the same with

several people modifying files is, at best, extremely complex, adds delays and manual operations, and

increases the risk of losing one’s work by overwriting files.

 you can NOT collaborate using prehistoric methods. Git has been designed to address this.⇒

2. Git’s « Building blocks »

Git works with 3 main blocks :

a. the « working directory »

In this directory are the files you’re working on : your program, configuration files, possibly some

notes. This is a « normal » directory where you do your work (add / remove / change things). You’ll

have to explicitely ask Git to track some files before the magic begins ;-)

What’s important about this directory is that, since you’re tracking the versions of files over time, it

can display ANY version of your work : the latest version or any previous version. This is what allows

to have a look at previous changes / edit / undo / fix things.

NB : Git won’t show you a previous version of a file unless you explicitely ask it to do so. So, 99.9 %

of the time, this « working directory » will show the lastest version of your work.

b. the « index » (or « staging area »)

You record changes in Git with a « commit » operation. This is a simple and quick action, but its

preparation can be more complex.

Committing is like shipping a parcel : the package you’re about to ship is sealed, you just have to write

the recipient ‘s address and leave it at the post office. Before sealing it, you’ll have to gather items in

a box : you can add one, remove one, replace one, and do anything you like before the package is

sealed.

It’s the same thing in the « staging area » : this area is an open box where you put some stuff to ship.

In the context of « version control », the items to ship are changes made to text files : lines added /

removed / changed / moved / ...

c. the « .git » directory

A « Git repository » is a regular directory (your « working area ») where Git has initialized some files

for its own usage (list of tracked files, history, ...). A repository continues « down » into sub-

directories, but not up to the parent directories.

Git saves its metadata into a « .git » (hidden) directory inside the directory you’ve chosen as your

repository. What’s inside this .git directory is exclusively Git’s internal plumbing, and you mustn’t

mess with it.

Some googling may suggest to alter files within « .git ». DON’T DO THAT : there are safe ways to do

things without risking to corrupt metadata and losing history.

If you remove this .git directory (i.e. delete all history), your Git repository instantly transforms into a

« normal » directory, in its current status… (you shouldn’t do that either).

3. Prerequisites

This tutorial contains step-by-step instructions to Git basics. Even though you’re not expected to be

completely familiar with Git concepts, you should have a look to some documentation first :

 https://ensiwiki.ensimag.fr/images/3/34/Git-slides.pdf

 http://ndpsoftware.com/git-cheatsheet.html

 http://git-scm.com/book/en/v2/Getting-Started-Git-Basics

4. My first Git repository

Let’s create a working directory :
mkdir -p ~/myFirstGitRepository
cd ~/myFirstGitRepository

Let’s create a new Git repository there :
git init

This outputs :
Initialized empty Git repository in ~/myFirstGitRepository/.git/

ls –al

outputs :
drwxr-x--- 3 thomas git 4096 Dec 8 10:38 .
drwxrwxrwt. 9 root root 4096 Dec 8 10:38 ..
drwxr-x--- 7 thomas git 4096 Dec 8 10:38 .git this is for metadata

http://git-scm.com/book/en/v2/Getting-Started-Git-Basics
http://ndpsoftware.com/git-cheatsheet.html
https://ensiwiki.ensimag.fr/images/3/34/Git-slides.pdf

5. My first commit

Now let’s write a program :
echo -e "line1\nline2\nline3" > myProgram

What does Git know about it ?
git s « git s » is an alias for « git status » (see the ~/.gitconfig chapter)

Untracked files:
(use "git add <file>..." to include in what will be committed)
#
myProgram
nothing added to commit but untracked files present (use "git add" to track)

Git has detected our new file, but it is not managed by Git so far : « untracked ».

Let’s ask Git to track it :
git a myProgram « git a » is an alias for « git add »

a. NB : about « tracked » files and « git add » :

« Tracking a file » means Git is aware of it. It detects and reports changes made to this file,

and you are able to commit such changes.

You don’t have to track all files of your working area (for instance, if you track a source code

file and a Makefile, tracking the compiled binary would add redundant information to the

repository).

The « git add »command is used to declare a new file to « track », but there's something

subtle with this command : « git add myFile »

• does not politely asks Git to « magically » track myFile

• instead, it detects the differences between the current lines of myFile and the

previous known lines of myFile. In that case, ALL the lines of myFile are new lines,

and Git adds them to the staging area. They are ready to be shipped with the next

commit command.

« git add myFile » is not only for the first time : it is for anytime there are changes, including

the first time, where everything is new and appears as a change. The next time you’ll change

anything to myFile, you’ll have to run « git add myFile » again to add the changes to the

staging area.

Then :
git s

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: myProgram

It’s time to commit !!!
git co -m "This is my first commit" Choosing the right commit message is an ART !

[master (root-commit) 487f1da] This is my first commit
 1 files changed, 3 insertions(+), 0 deletions(-)

 create mode 100644 myProgram

Let’s have a look at the « history » (i.e. : logs) :
git log

commit 487f1da203c469a0ed47f02a6c579b0d56a74577
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 13:28:38 2014 +0100

 This is my first commit

487f1da203c469a0ed47f02a6c579b0d56a74577 is the « commit ID ». It is computed from commit

data + header information hashed with SHA1. It can be considered as a unique ID.

6. A less basic commit

Let’s improve our program with a new file for a function :
echo "function1" > myFunction

Then we’ll edit myProgram to « include » our function file :

include myFunction
line1
line2
line3

What’s up, Git ?
git s

On branch master
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: myProgram
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
myFunction
no changes added to commit (use "git add" and/or "git commit -a")

 myProgram has changed since the latest commit

 myFunction is untracked (i.e. we’ve not yet asked Git to track it)

What are the differences in myProgram ?
git d myProgram « git d » is an alias for « git diff »

diff --git a/myProgram b/myProgram
index 83db48f..c9d212e 100644
--- a/myProgram
+++ b/myProgram

@@ -1,3 +1,4 @@
+include myFunction this line was added : notice the leading ‘+’

 line1
 line2
 line3

Let’s « stage » the differences :
git a myProgram

(returns nothing)

git a myFunction

(returns nothing)

git s

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: myFunction
modified: myProgram
#

Changes are « staged » (i.e. they are stored in the « staging area » a.k.a the « index »). Let’s register

them into our repository with a commit :
git commit -m "New function file 'included' by myProgram"

[master bff43d6] New function file 'included' by myProgram
 2 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 myFunction

NB : the first line fields are :

 master : the current branch (more about branches later ;-)

 bff43d6 : leading characters of the commit ID (see below)

 the commit message.

History of my commits?
git log

commit bff43d60116098a599d10443b9cfc6fcfe0b577e
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 15:05:38 2014 +0100

 New function file 'included' by myProgram

commit 487f1da203c469a0ed47f02a6c579b0d56a74577
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 13:28:38 2014 +0100

 This is my first commit

7. Here comes the magic !

My files are now handled by Git, which means I can recover any previous version of every single file.

a. Discard all changes

Let’s imagine we’ve made some changes into myProgram :
echo "this is bad code I will regret later" > myProgram

Now, myProgram is broken and won’t work anywore since it looks like this :

this is bad code I will regret later

But I can recover it :
git checkout myProgram

(returns nothing)

myProgram now looks like :
include myFunction
line1
line2
line3

b. Undelete files

Deleting a file is also considered as a change by Git, and this can be un-done. Let’s try this :
rm myProgram
ls

myFunction

Recover :
git checkout myProgram

myProgram is back :

include myFunction
line1
line2
line3

\o/

8. Git must be aware of every change !

Our little program has improved, and myFunction now contains several functions :
function1
function2
function3

Exercise : edit myFunction to add functions as shown above, then commit your changes.

a. Renaming a file

Everything is fine, except that the file name « myFunction » doesn’t look appropriate anymore. But if

we rename the file without telling Git :
mv myFunction myFunctions
git s

On branch master
Changed but not updated:
(use "git add/rm <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
deleted: myFunction
#

Untracked files:
(use "git add <file>..." to include in what will be committed)
#
myFunctions
no changes added to commit (use "git add" and/or "git commit -a")

Git considers we have :

 Deleted myFunction

 Created myFunctions

This means the whole history of modifications made to myFunction will stop here, and a new blank

history starts for myFunctions. This is not what we want to do.

So let’s rename back our file and see the right method to proceed :
mv myFunctions myFunction
git mv myFunction myFunctions « git mv » tells git we’re renaming files
ls -1

myFunctions the file has been renamed \o/
myProgram

git s

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: myFunction -> myFunctions
#

Then we can commit :
git co myFunction myFunctions -m "Rename my functions file"

[master bf2d1a8] Rename my functions file
 1 files changed, 0 insertions(+), 0 deletions(-)
 rename myFunction => myFunctions (100%)

NB : In this special case, we have to explicitely specify the names of the objects to commit to git

commit :

git commit <object(s) to commit> –m "commit message"

As well as other changes, renaming a file is monitored by Git and appears in the history :
git log

commit f6b40a605dada3f1aa84a8a5b324ffaf35f72f5e
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 17:32:10 2014 +0100

 Rename my functions file

commit 7709e0d6590a4a7ff8812416267a570f5a04e006
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 16:28:32 2014 +0100

 Add function2 and function3

...

b. Deleting a file

The same method applies when deleting files tracked by Git : don’t delete anything without telling

Git :

Do not :
rm <fileToBeDeleted>

But do instead :
git rm <fileToBeDeleted>

Then stage this and commit it ;-)

9. Commit error

Ooops : I forgot to update the « include » statement in myProgram : so far, I « include myFunction »

instead of « include myFunctions ». 2 solutions :

 Update myProgram and make an « ooopscommit » (works but ugly !)

 Update myProgram and amend the previous commit. We’ll do it this way !

Let’s start by fixing our code so that myProgram looks like :
include myFunctions
line1
line2
line3

Differences ?
git d myProgram

diff --git a/myProgram b/myProgram
index c9d212e..05ede74 100644
--- a/myProgram
+++ b/myProgram
@@ -1,4 +1,4 @@

-include myFunction

+include myFunctions

 line1
 line2
 line3

Let’s add these differences to the index :
git a myProgram

Then, let’s amend our previous commit :
git co --amend

This will open the previous commit message in the default text editor (mostly Vi or Nano). We can

then edit this message so that it gives a good description of the changes made by both commits. Save

and exit shows :
[master 69ce360] Rename my functions file
 2 files changed, 1 insertions(+), 1 deletions(-)

 rename myFunction => myFunctions (100%)

Let’s check :
git log

commit 69ce3607a6d2a2dd8b3746d6d0212462e1bb3d3a
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 17:32:10 2014 +0100

 Rename my functions file

commit 7709e0d6590a4a7ff8812416267a570f5a04e006
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 16:28:32 2014 +0100

 Add function2 and function3

NB : there’s only one commit about renaming files.

To have a detailled view of what changes were made by this commit), run :
git show <commitIdBefore>..<commitId>

In our example :
git show
7709e0d6590a4a7ff8812416267a570f5a04e006..69ce3607a6d2a2dd8b3746d6d0212462e1bb3d3a

commit 69ce3607a6d2a2dd8b3746d6d0212462e1bb3d3a
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Mon Dec 8 17:32:10 2014 +0100

 Rename my functions file

diff --git a/myFunction b/myFunction
deleted file mode 100644
index feb2fb2..0000000
--- a/myFunction
+++ /dev/null
@@ -1,4 +0,0 @@

-function1
-function2
-function3

-
diff --git a/myFunctions b/myFunctions
new file mode 100644
index 0000000..feb2fb2
--- /dev/null
+++ b/myFunctions
@@ -0,0 +1,4 @@

+function1
+function2
+function3

+
diff --git a/myProgram b/myProgram
index c9d212e..05ede74 100644
--- a/myProgram
+++ b/myProgram
@@ -1,4 +1,4 @@

-include myFunction

+include myFunctions

 line1
 line2
 line3

NB : When dealing with commit IDs, Git accepts shortened versions of a commit ID as long as it refers

to a single commit from the current repository. The command line above is equivalent to :
git show 7709..69ce

(Of course, you will have different commit IDs when trying this, but you get the idea ;-)

Maybe you have already noticed the short commit ID displayed while completing a commit :
[master 69ce360] Rename my functions file

Means :
[<branchName> <shortCommitId>] <commitMessage>

10.Branches

a. Creating a new branch

Let’s imagine our program as evolved so that it looks like :

 myFunctions :

function1
function2
function3
...
functionN

 myProgram :

include myFunctions
line1 using function1
line2 using function2
a very interesting line of code
don't change the line below
doNotTouchThisIsMagic
line3
call functionN

Exercise : edit both files and commit changes (in a single commit !)

The program has been released to end-users and is now in its « production » step. This phase involves

some bug fixes, as well as minor changes. In the meantime, developers are considering rewriting

most of their functions for performance / code cleaning / new 3rd-party API / any reason. This means

they must maintain both versions and be able to switch from one to each other quickly, at any time, if

possible.

Git branches are made for this. You may have already noticed :
git s

On branch master
nothing to commit (working directory clean)

By default, we’re already using a branch called « master ». We’ve developed our program on this

branch, made commits, renamed files, … Let’s decide the master branch will be dedicated to the

« production » version of the program, and let’s create a new branch for the refactoring. We’ll call it

refactoring :

git branch refactoring

(returns nothing)

git s

On branch master
nothing to commit (working directory clean)

NB : We’ve not yet « jumped » to the new branch.

git checkout refactoring

Switched to branch 'refactoring'

Done : we’re on our new refactoring branch.

To check which branch you’re on :
git branch

 master
* refactoring

The * highlights the current branch.

Now, the code refactoring takes place. Here’s the listing of myFunctions :

function1
clean_function2
clean_function3
new_function4
...
functionN

Then :
git a myFunctions
git co -m "Refactor of my functions"
git log

commit e6ec617cc0c1d6c9fc77d904a44b3a3a3398226e
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 12:21:58 2014 +0100

 Refactor of my functions

commit 2ff1f594be6afc4babc859a8a6f69fd8339d745b
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 11:52:24 2014 +0100

 Little Program becomes bigger.

(previous commits not shown here ;-)

b. Jumping from branch to branch

ALERT : a bug was found on the production version of the program. We must stop working right now

on the refactoring and start fixing this bug.

To do so, let’s jump back to our master branch :
git checkout master

Switched to branch 'master'

Exercise : can you remember another way to get the current branch name ?

Let’s have a look at myFunctions . It should look like :
function1
function2
function3
...
functionN

It’s the version we’ve released to production .

Let’s fix the bug now. myProgram looks like :
include myFunctions
line1 using function1
line2 using function2
a very interesting line of code
don't change the line below
doNotTouchThisIsMagic
myVariable = 42 the best bugfix ever !
line3
call functionN

Exercise : Edit myProgram and commit changes so that git log returns :
commit 7c61d22f2ca5f905044024a9ab9eacf846961226
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 12:34:38 2014 +0100

 Bug fix

commit 2ff1f594be6afc4babc859a8a6f69fd8339d745b
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 11:52:24 2014 +0100

 Little Program becomes bigger.

(previous commits not shown here ;-)

NB :

 The commit IDs will be different ;-)

 The commit right before the bug fix is the « Little Program becomes bigger. » commit. The

« Refactor of my functions » commit we just made is invisible because it lies on another

branch.

c. Branches, what then ?

This situation can not last forever :

 If the refactoring fails, we may decide to delete the « refactoring » branch, improve our

TODOs/DON’Ts development guidelines and move on from this new experience.
 If the refactoring works, we have to « mix » the changes made on the « refactoring » branch

into the « master » branch (having our « bug fix » changes). This way, we’ll produce a new

improved production version.

We’ll continue with the « refactoring works » hypothesis. But for the sake of learning, here is what

we’d have to do in the other situation : deleting the « refactoring » branch :

1. Like in the real life, you should not try to delete the branch you’re sitting on ! So move to another

branch first (any branch will fit) :
git checkout master

2. Delete the branch :
git branch -d refactoring

Ok, time has come to mix both branches. What we want to do now is to « take » all the changes we

made on the files of the « refactoring » branch and « add » them to the files of the « master »

branch. This operation is called a « git merge ».

NB : be careful when merging : there is a « source » and a « destination » branch. Switching them

may lead to unexpected results ;-)

To merge « refactoring » (source) into « master » (destination) :

Jump to the destination branch :
git checkout master

Switched to branch 'master'

Or (if you were already there) :
Already on 'master'

Merge the source branch (refactoring) on the current branch (master) :
git merge refactoring

Merge made by recursive.
 myFunctions | 5 +++--
 1 files changed, 3 insertions(+), 2 deletions(-)

Then delete the merged branch :
git branch -d refactoring

Deleted branch refactoring (was e6ec617).

NB : deleting the merged branch is not mandatory. It is possible to continue developing on a branch

such as « refactoring », and merging it several times. It all depends on the context of each project.

d. Branches : the end

Let’s have a look at our source code :

myFunctions :
function1
clean_function2
clean_function3
new_function4
...
functionN

This is our refactoring.

myProgram :

include myFunctions
line1 using function1
line2 using function2
a very interesting line of code
don't change the line below
doNotTouchThisIsMagic
myVariable = 42
line3
call functionN

And we even have our bugfix !

Let’s have a look at our history :
git log

commit de17d94e8cf9fdd87d1b9085ed09c2cf7580522a
Merge: 7c61d22 e6ec617
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 16:12:10 2014 +0100

 Merge branch 'refactoring'

commit 7c61d22f2ca5f905044024a9ab9eacf846961226
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 12:34:38 2014 +0100

 Bug fix

commit e6ec617cc0c1d6c9fc77d904a44b3a3a3398226e
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 12:21:58 2014 +0100

 Refactor of my functions

commit 2ff1f594be6afc4babc859a8a6f69fd8339d745b
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 11:52:24 2014 +0100

 Little Program becomes bigger.

(previous commits not shown here ;-)

The log shows the « bug fix » and « refactor » commits, and another one for the merge itself.

11.Remotes

So far, we’ve created a local repository and played with it. Fine, but Git is essentially about

collaborating with others and sharing code with them.

Let’s imagine a new developer (called Bob) joins the team. He will have his own local repository, and

both repositories (Bob’s and mine) will exchange data about the program we’re developing. From my

point of view, Bob’s local repository will be a remote repository. So is mine for him.

a. Let’s create a remote repository

Let’s create Bob’s repository. It can actually be anywhere on the file system, or even on a different

machine (and generally in /home/bob/development/). Anything Git does locally in this example can

be done over http / SSH / …, but this is beyond the scope of this tutorial.
mkdir -p ~/bob/repository
cd ~/bob/repository

Since Bob is joining the development team, he needs to get the full repository :

 the source code (a.k.a. the working copy, found in ~/myFirstGitRepository)

 the history (i.e. the metadata, found in ~/myFirstGitRepository/.git)

We’re going to provide him with this data thanks to git clone :
git clone ~/myFirstGitRepository/ . don’t forget the trailing "."

Initialized empty Git repository in ~/bob/repository/.git/

NB : git clone expects 2 parameters : a source repository and a destination directory. If you omit the

destination, it will create, in the current directory, a new directory named after the repository name.

Running :
git clone ~/myFirstGitRepository/ no trailing "." this time

Will create ~/bob/repository/myFirstGitRepository/ .

Why Git states it « initialized an empty repository » when cloning is still mysterious because this new

repository is not empty at all. Let’s make sure our files are there :
ls -l

total 8
-rw-r----- 1 thomas git 70 Dec 9 17:37 myFunctions
-rw-r----- 1 thomas git 184 Dec 9 17:37 myProgram

As well as the history :
git log

commit de17d94e8cf9fdd87d1b9085ed09c2cf7580522a
Merge: 7c61d22 e6ec617
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 16:12:10 2014 +0100

 Merge branch 'refactoring'

(previous commits not shown here ;-)

b. Having a look at this « remote » thing

git clone is very convenient, because as soon as we clone a repository, this repository (the source

repository) is configured as a remote of the newly created repository (destination repository).

Let’s check :
git remote -v

origin /home/thomas/myFirstGitRepository (fetch)
origin /home/thomas/myFirstGitRepository (push)

This indicates that the directory we created at the very beginning of this tutorial

(/home/thomas/myFirstGitRepository) is a remote repository that can be used to fetch and to push

data. It also states that « origin » is an alias for this remote repository (this is a default setting, as well

as « master » for the default branch).

c. Let developers share code

Let’s see how the code is shared between developpers. Back to the 1st repository

(/home/thomas/myFirstGitRepository), we’re going to improve our program.

Exercise : update the source code so that :
git d

Returns :
diff --git a/myProgram b/myProgram
index 02dcb3b..a3586c5 100644
--- a/myProgram
+++ b/myProgram
@@ -6,4 +6,6 @@ a very interesting line of code
 doNotTouchThisIsMagic
 myVariable = 42
 line3
+
+some more very interesting code

Commit so that the log says :
commit 2c6424f4f7da32fa9b18dfa3ed6663dd35739150
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 18:12:57 2014 +0100

 To infinity and beyond

Let’s now move to Bob’s repository and check the log :
cd ../bob/repository/
git log

commit de17d94e8cf9fdd87d1b9085ed09c2cf7580522a
Merge: 7c61d22 e6ec617
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 16:12:10 2014 +0100

 Merge branch 'refactoring'

The latest commit made by Thomas is not there (there’s some magic within Git, but don’t expect too much ;-)

What if we asked politely ?

git pull -f origin master

remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From /home/thomas/myFirstGitRepository
 * branch master -> FETCH_HEAD
First, rewinding head to replay your work on top of it...
Fast-forwarded master to 2c6424f4f7da32fa9b18dfa3ed6663dd35739150.

Let’s check the log :
git log

commit 2c6424f4f7da32fa9b18dfa3ed6663dd35739150
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 18:12:57 2014 +0100

 To infinity and beyond

commit de17d94e8cf9fdd87d1b9085ed09c2cf7580522a
Merge: 7c61d22 e6ec617
Author: Thomas ANDERSON <thomas.anderson@metacortex.com>
Date: Tue Dec 9 16:12:10 2014 +0100

 Merge branch 'refactoring'

(previous commits not shown here ;-)

\o/

Let’s have a look at myProgram :

include myFunctions
line1 using function1
line2 using function2
a very interesting line of code
don't change the line below
doNotTouchThisIsMagic
myVariable = 42
line3
call functionN

some more very interesting code this is the change Thomas just made

12. Final advice

a. Help on git commands :

There is a man page for every git command. It is available with :
git <command> --help

b. Architecture, branches, remotes and naming

The way we organize our Git repositories (local, remotes, branches, aliases, …), and the names given

to them is completely up to the developers team. Git itself has very few restrictions on the workflow

organization, even though good practices exist.

13.Sample ~/.gitconfig :

Here is my ~/.gitconfig

Feel free to adapt it to your needs !
[alias]

a = add
ap = add --patch
b = branch
co = commit
d = diff
ds = diff --staged
l = ls-files
s = status

s = status --untracked-files=no

[branch]
autosetuprebase = always # turn "git pull" into "git pull --rebase"

automatically

[color]
diff = auto
status = auto
branch = auto

[user]
email = thomas.anderson@metacortex.com
name = Thomas ANDERSON

